Kähler manifolds and their relatives

نویسنده

  • Antonio J. Di Scala
چکیده

Let M1 and M2 be two Kähler manifolds. We call M1 and M2 relatives if they share a non-trivial Kähler submanifold S, namely, if there exist two holomorphic and isometric immersions (Kähler immersions) h1 : S → M1 and h2 : S → M2. Moreover, two Kähler manifolds M1 and M2 are said to be weakly relatives if there exist two locally isometric (not necessarily holomorphic) Kähler manifolds S1 and S2 which admit two Kähler immersions into M1 and M2 respectively. The notions introduced are not equivalent (cfr. Example 2.3). Our main results in this paper are Theorem 1.2 and Theorem 1.4. In the first theorem we show that a complex bounded domainD ⊂ C with its Bergman metric and a projective Kähler manifold (i.e. a projective manifold endowed with the restriction of the Fubini–Study metric) are not relatives. In the second theorem we prove that a Hermitian symmetric space of noncompact type and a projective Kähler manifold are not weakly relatives. Notice that the proof of the second result does not follows trivially from the first one. We also remark that the above results are of local nature, i.e. no assumptions are used about the compactness or completeness of the manifolds involved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

H-minimal Lagrangian fibrations in Kähler manifolds and minimal Lagrangian vanishing tori in Kähler-Einstein manifolds

H-minimal Lagrangian submanifolds in general Kähler manifolds generalize special Lagrangian submanifolds in Calabi-Yau manifolds. In this paper we will use the deformation theory of H-minimal Lagrangian submanifolds in Kähler manifolds to construct minimal Lagrangian torus in certain Kähler-Einstein manifolds with negative first Chern class.

متن کامل

Cohomologically Kähler Manifolds with No Kähler Metrics

We show some examples of compact symplectic solvmanifolds, of dimension greater than four, which are cohomologically Kähler and do not admit Kähler metric since their fundamental groups cannot be the fundamental group of any compact Kähler manifold. Some of the examples that we study were considered by Benson and Gordon (1990). However, whether such manifolds have Kähler metrics was an open que...

متن کامل

Miyaoka-yau Type Inequalities for Kähler-einstein Manifolds

We investigate Chern number inequalities on Kähler-Einstein manifolds and their relation to uniformization. For Kähler-Einstein manifolds with c1 > 0, we prove certain Chern number inequalities in the toric case. For Kähler-Einstein manifolds with c1 < 0, we propose a series of Chern number inequalities, interpolating Yau’s and Miyaoka’s inequalities.

متن کامل

Estimating the eigenvalues on Quaternionic Kähler Manifolds

We study geometric first order differential operators on quaternionic Kähler manifolds. Their principal symbols are related to the enveloping algebra and Casimir elements for Sp(1)Sp(n). This observation leads to anti-symmetry of the principal symbols and BochnerWeitzenböck formulas for operators. As an application, we estimate the first eigenvalues of them.

متن کامل

A Theorem of Tits Type for Compact Kähler Manifolds

We prove a theorem of Tits type for compact Kähler manifolds, which has been conjectured in the paper [9].

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016